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Talk Outline 

• Introduction to stacked DRAM Caches 

• Background (An overview of ANATOMY§) 

• ANATOMY-Cache: Modeling Stacked DRAM 

Cache Organizations 

• Evaluation 

• Insights 

• Conclusions 

 

§ANATOMY: An Analytical Model of Memory System Performance (Published in the 

2014 ACM international conference on Measurement and modeling of computer 

systems) 2 



Stacked DRAM 

• DRAM vertically stacked 

over the processor die. 

• Stacked DRAMs offer  

– High bandwidth  

– High capacity  

– Moderately low latency. 

• Several proposals to 

organize this large 

DRAM as a last-level 

cache. 

Picture courtesy Bryan Black (From MICRO 2013 Keynote) 

3 



Processor Orgn. With DRAM 
Cache 

Core 

0 

Core 

1 

Core 

N 

. 

. 

. 

L1D 

L1I 

L1D 

L1I 

L1D 

L1I 

L2 

(LLSC) 

DRAM 

Cache 

(Vertically 

Stacked) 

(Off 

Chip) 

Main 

Memory 

Tag-

Pred 

Hit 

Memory 

Controller 

Miss 

Processor with Stacked DRAM 

MetaData 

on SRAM 

MetaData 

on DRAM 

4 



Talk Outline 

• Introduction to stacked DRAM Caches 

• Background (An overview of ANATOMY) 

• ANATOMY-Cache: Modeling Stacked DRAM 

Cache Organizations 

• Evaluation 

• Insights 

• Conclusions 

 

5 



Memory Controller 

Data Read & Write operations 

Control 

Address 

Data 

Rows 

Columns 

Bank 

Logic 

Row Buffer 

DRAM Bank 

DIMM 

Rank 

Device 

Overview of a DRAM  based memory 

Bank 

6 



Basic DRAM Operations 

• ACTIVATE  Bring data from DRAM core into the row-buffer 

• READ/WRITE  Perform read/write operations on the 
contents in the row-buffer 

• PRECHARGE  Store data back to DRAM core (ACTIVATE 
discharges capacitors), put cells back at neutral voltage 

 

H M 

Memory Requests 

PRE RD ACT 

M 

RD PRE RD ACT 

Row buffer hits (RBH) are faster and  
consume less power 

Bank Level Parallelism (BLP) 
• Parallelism improves performance 
• Some switching delays hurt performance 7 



ANATOMY – Analytical Model of 
Memory 

Two components 

1) Queuing Model of Memory 

– Organizational and Technological characteristics 

– Workload characteristics used as input 

2) Use of Workload Characteristics 

– Locality and Parallelism in workload’s memory 

accesses 
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Analytical Model for Memory 
System Performance 
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Validation - Model Accuracy 

• Low Errors in RBH, BLP and Latency Estimation 
– Average error of 3.9%, 4.2% and 4% 

• ANATOMY predicts trends accurately 
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ANATOMY-Cache Model 
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ANATOMY-Cache Model 

Key Parameters that 

govern performance: 

• Arrival Rate 

• Tag access time 
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ANATOMY-Cache Model 
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ANATOMY-Cache Model 
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• Arrival Rate 

• Tag access time 

• Cache hit rate 

• Cache RBH 

 

L2 

(LLSC) 

DRAM 

Cache 

(Vertically 

Stacked) 

(Off 

Chip) 

Main 

Memory 

Hit 

Memory 

Controller 

Miss 

Processor with Stacked DRAM 

Tag-Pred 

16 



ANATOMY-Cache Model 

Key Parameters that 

govern performance: 

• Arrival Rate 

• Tag access time 

• Cache hit rate 
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Extending ANATOMY to DRAM 
Caches 
• Two ANATOMY 

instances - one for 

DRAM cache and one for 

main memory. 

ANATOMYCache 

ANATOMYMem 
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Extending ANATOMY to DRAM 
Caches 
• Two ANATOMY 

instances - one for 

DRAM cache and one for 

main memory. 

• The models are fed by 

the output of the tag 

server and each other’s 

outputs. 

• We compute the 

latencies at the cache 

and memory using 

ANATOMY. 
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Obtaining the average LLSC 
miss penalty 

• Lcache and Lmem are combined by to estimate the 

average LLSC miss penalty. 

 

• But first we discuss the estimation of the key 

parameters that govern LCache and LMem.  
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Estimating Key Parameters … 

• Arrival Rate 

• Tag access time 

• Cache hit rate 

• Cache RBH 

• Cache Miss Penalty 
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Estimating the Cache Arrival 
Rate 

• Arrival Rate at the 

Cache is a sum of  

 several streams of 

 accesses. 
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Estimating the Cache Arrival 
Rate 

• Arrival Rate at the 

Cache is a sum of  

 several streams of 

 accesses. 

• Predicted Hits 

 

L2 

(LLSC) 

DRAM 

Cache 

(Vertically 

Stacked) 

(Off 

Chip) 

Main 

Memory 

Hit 

Memory 

Controller 

Miss 

Processor with Stacked DRAM 

Tag-Pred 
λ 

28 



Estimating the Cache Arrival 
Rate 

• Arrival Rate at the 

Cache is a sum of  

 several streams of 
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Estimating the Cache Arrival 
Rate 

• Arrival Rate at the 

Cache is a sum of  

 several streams of 

 accesses. 

• Predicted Hits 

• No predictions 

• Line fills and 
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Summarizing the Cache Arrival 
Rate 

Request 

Stream 

Rate Notes 

Predicted 

Hits 

λ*hpred*hcache 

No 

predictions 

λ*(1-hpred) They are sent to the cache for 

tag look-up 

Line Fills λ*(1-hcache)*Bs Bs is the cache block size 

Writebacks λ*(1-hcache)*w w is the fraction of misses that 

cause write-backs 

λcache = λ*hpred*hcache + λ*(1-hpred) + λ*(1-hcache)*Bs + λ*(1-hcache)*w  
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Estimating Tag Predictor Hit Rate 
and Access Time 

Tags-on-SRAM 

• All tags on SRAM. 

• Hit Rate = 100% 

 
Tags-on-DRAM 

• A small set-

associative cache. 

• Hit Rate determined 

by running an 

access trace through 

the cache model. 

Predictor access time depends on its size.  

An estimate is obtained using CACTII.  
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Estimating Cache Hit Rate 

• Cache Hit Rate depends on 3 key parameters: 

– Cache Size 

– Set Associativity 

– Block Size 

• Well-studied problem 

– A trace-based model and reuse distance analysis. 

• We use a trace of accesses from the LLSC. 
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Miss Trace 
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• Larger block sizes can capture spatial locality. 

• Bandwidth-neutral model: Cache miss rate 

halves with doubling of cache block size.   

» If this holds, then measuring 

hit rate at smallest block size 

via trace based analysis is 

sufficient. 

» For larger block sizes, 

estimate via:  

Estimating Cache Hit Rate with 
Block Size 

Workload Q5 is bandwidth-neutral 34 



• For such workloads, 

bandwidth-neutral model 

leads to lower miss rate 

prediction. 

 

• Use trace-based cache 

simulations in such 

cases. 

Not all workloads are 
bandwidth-neutral 

Workload Q22 is NOT  

bandwidth-neutral 
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Estimating DRAM Cache Row-
Buffer Hit Rate 

• Row-Buffer Hit rate (RBH) of the DRAM cache 

depends on the access pattern and the data 

organization on the DRAM. 

 

• We estimate RBH using the Reuse-Distance 

framework similar to ANATOMY. 

 

• Details are in the paper. 
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Putting them together … 

• LLSC Miss Penalty 

from: Lcache and Lmem  
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Experimental Evaluation 

• Validation using GEM5 Simulation (with detailed Memory model) 

• Use of Multiprogrammed workloads 

• Workloads comprising of SPEC2000/SPEC2006 benchmarks 

• Architecture Configurations 

– 4 core and 8 core 

– 128MB (4 core) and 256MB (8 core) DRAM caches 

– Cache Memory: 1.6GHz DRAM, 2KB page, 128-bit bus 

– DRAM Main Memory: 3.2GHz DRAM, 64-bit bus 

– Tags-on-DRAM: 

• Direct Mapped 64B block size 

• Tags and Data on the same DRAM rows 

• Tag Predictor: 2-way set associative tag cache 

– Tags-on-SRAM: 

• Block Size: 1024B 

• 2 way set associative 
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Validation of the Tags-on-
DRAM Model 

• Low errors in estimation of Avg. LLSC Miss Penalty (10.9% 

in 4-core and 9.3% in 8-core workloads) 
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Validation of the Tags-on-
SRAM Model 

• Low errors in estimation of Avg. LLSC Miss Penalty (10.5% 

in 4-core and 8.2% in 8-core workloads) 
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Insight 1: It is hard to out-perform 
Tags-on-SRAM designs 

Tag Access Time: 

  

 

 

 

 

 

 

 
Requires High Predictor Hit Rate to beat Tags-on-SRAM Latency for Tag 

Lookup 
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Insight 2 - Motivation 

• The DRAM Cache gets a very high cache hit 

rate. 

• The Main Memory remains mostly idle! 

• Cache is congested and memory is free! 

• So we consider if bypassing some cache hits to 

main memory would get an overall latency 

benefit … 

• We extend ANATOMY-Cache model by 

accounting for a fraction of requests that bypass 

the cache (details in the paper). 
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Insight 2: Cache Bypass/Offload 
Helps! 

Congested Workload: Misses Are Expensive! 

There is a sweet-spot at 

which Avg. LLSC Miss 

Penalty is minimized 
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ANATOMY-Cache  

• First Analytical Model of Stacked DRAM Caches 

• Covers Both Tags-on-DRAM and Tags-on-SRAM 

organizations 

• We investigated two insights with the help of the 

model 
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Thank You! 

Thank You !! 
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