
Enhancing Performance And
Reliability of Rule Management

Platforms

Mark Grechanik and B.M. Mainul Hossain
University of Illinois at Chicago

RulE Management Platforms (REMPs) allow software
engineers to represent programming logic as

conditional sentences that relate statements of facts
(i.e., rules) using high-level declarative languages

Rule Structure And Example

Rules Format:

when
<conditions>

then
<actions>

Example:

rule simple_rule:
When

Student(points >= 80)
then

System.out.println(“A+");
End

Antecedent

Consequence

An Interesting Question

Rule A:

When
Product (Price < 80)

Then
set(Price, 100);

Rule B:

When
Product (Price > 50)

Then
set(Price, 200);

Price = 65

An Interesting Question

Rule A:

When
Product (Price < 80)

Then
set(Price, 100);

Rule B:

When
Product (Price > 50)

Then
set(Price, 200);

Price = 65

An Interesting Question

Rule A:

When
Product (Price < 80)

Then
set(Price, 100);

Rule B:

When
Product (Price > 50)

Then
set(Price, 200);

Price = 65

If-Then Decision Points
Alternative to rules
is the imperative
model where
sequences of if-
then statements
with conditionals
and loops are
evaluated in a
strictly defined
order.

If-Then Decision Points
Alternative to rules
is the imperative
model where
sequences of if-
then statements
with conditionals
and loops are
evaluated in a
strictly defined
order.

Hard to maintain and
inefficient code that is

not adaptable to
frequent changes in

business requirements

REMPS Are Widely Used

According to market report from Forrester, the estimated
revenue of business rules management systems (BRMS)
increased from $265 million in 2008 to over $600 million in
2011. It is one of the fastest growing markets.

One leading vendor, IBM ILOG Optimization is used by
over 50% of the world's largest companies, 1000’s of
Universities, and 1000's of application providers.

CLIPS JBOSS DROOLS
JESS Oracle FUSION

BizTalk

How REMPs Work

Execution Platform

Rule 1Rule 2Rule N

Rule language compiler

Rule
1

Rule
2

Rule
N …

…
DB

P1P2P3…PK

How REMPs Work

Execution Platform

Rule 1Rule 2Rule N

Rule language compiler

Rule
1

Rule
2

Rule
N …

…

P1P2P3…PK

DB

How REMPs Work

Execution Platform

Rule 1Rule 2Rule N

Rule language compiler

Rule
1

Rule
2

Rule
N …

…

P1P2P3…PK

DB

How REMPs Work

Execution Platform

Rule 1Rule 2Rule N

Rule language compiler

Rule
1

Rule
2

Rule
N …

…

P1P2P3…PK

DB

How REMPs Work

Execution Platform

Rule 1Rule 2Rule N

Rule language compiler

Rule
1

Rule
2

Rule
N …

…

P1P2P3…PK

DB

How REMPs Work

Execution Platform

Rule 1Rule 2Rule N

Rule language compiler

Rule
1

Rule
2

Rule
N …

…

P1P2P3…PK

DB

How REMPs Work

Execution Platform

Rule 1Rule 2Rule N

Rule language compiler

Rule
1

Rule
2

Rule
N …

…
DB

P1P2P3…PK

No
Access

Separation of Concerns

A key property of REMPs is that they encapsulate the
control flow that includes fact inference and rule firing logics

• It is a fundamental separation of concerns of the control flow and the rule
business logic.

Software engineers concentrate on reasoning about higher-
level business logic that they encode in rules without
worrying about low-level details of rule invocations by
effectively delegating this job to REMP engines
• Rule-driven APplications (RAPs) are highly adaptable to changing

requirements, since stakeholders simply add new rules as independent
modules to RAPs

www.PresentationPro.com

Benefits of REMPs And RAPs

Easy to maintain & evolve

Rules are easy to comprehend
and highly modular

RAPs are highly adaptable

Constraints of REMPs And
RAPs

RAPs may contain tens of
thousands of rules

Detection of conflicting
rules is difficult

Dependencies should not
be introduced among rules

The PAR Model For REMPs

Performance

ReliabilityAdaptability
R

E
M

Ps

Fundamental Problem

Many REMPs execute RAPs sequentially.

Locks introduce complex dependencies among
rules, thereby defeating the separation of concerns
and eventually the adaptability of RAPs.

How to enhance the performance of RAPs without
sacrificing their adaptability and reliability?

Motivating Example: Credit
rule "Rule-Credit" salience 10
when

$cashflow : Cashflow($account:account,
$date : date, $amount : amount,
type==Cashflow.CREDIT)
not Cashflow(account==$account,date<$date)

then
//some code
$account.setBalance(

$account.getBalance()+$amount);
retract($cashflow);

end

Motivating Example: Debit
rule "Rule-Debit" salience 1
when

$cashflow : Cashflow($account : account,
$date : date, $amount : amount,
type==Cashflow.DEBIT)
not Cashflow(account==$account,date<$date)

then
//some code
if($account.getBalance()>$amount){

$account.setBalance(
$account.getBalance()-$amount); }

else { new BlockedAccount($cashflow); }
retract($cashflow);

end

Parallelism Interferes With
Saliences

Let us assume that a REMP engine executes rules
in parallel and lock objects are used to synchronize
concurrent accesses.

Using a lock object effectively overrides the intention
of the programmer to give the priority to the rule with
a higher salience.

Given the large number of possible interleavings
among tens of thousands of rules in a RAP, it is very
difficult to reason about interactions between
saliences and synchronization lock mechanisms.

Reliability Meets
Performance

In fully parallelized REMPs, loss or reliability comes from two sources:

• different orders in which rules are executed by the REMP engines;
• races between parallelized executions of rules.

When the system produces different results consecutively for the same
computational task using the same input data, it is a serious problem,
since it reduces the confidence of the user in the RAP and it impacts
negatively the perception of the user about the business value that the
company or organization delivers.

• the execution order for different instructions can be affected by multiple factors beyond
the control of stakeholders

• sometimes even slight changes in the non-functional parameters of the environment
(e.g., paging on demand) for executing RAPs result in different orders of instruction
interleavings that lead to different results, hence the loss of reliability

The Problem Statement
Enable REMPs to execute rules in RAPs in parallel

Do not violate the separation of concerns in REMPs by
requiring programmers to use synchronization lock
mechanisms for concurrent accesses to shared resources

Prevent races in parallelized RAPs without explicit using of
locking mechanisms by programmers

Choose a better schedule for executing rules that share the
same lock objects to improve the overall performance of
RAPs

Core Ideas
1) Find all concurrent

access to resources
from rules where one of
the accesses is write.

2) Define synchronizations
around these accesses.

3) Impose a complete
ordering among all rules
that are fired in working

memory.

Our Solution - PERLATO
PErformance and Reliability for ruLe-driven
ApplicaTiOns (PERLATO) connects separate layers or
REMPs in a way that enable us to solve the fundamental
problem of REMP.
• we obtain a rule execution model from a RAP that approximate different

execution scenarios by using the if-then structure of rules by analyzing their
antecedents and consequents

• the obtained rule execution model is used in PERLATO to detect races
statically among these rules effectively and efficiently

• the rule execution model and locking strategies for a given RAP are passed
to the REMP engine, so that it can precompute an execution schedule for
rules in a RAP to optimize the performance of the RAP.

• We implemented PERLATO for JBoss Drools, an open-source
enterprise-level REMP and we evaluated PERLATO on three RAPs.
The results suggest that PERLATO is effective and efficient, since we
achieved up to 225% speedup on average without observing any
races.

Map fo PERLATO

Massive Parallel Computing

Parallelize

Schedule

Optimize

Performance

Reliability

Rule Management Platform
Knowledge Base

Reasoning Engine
Event Processing

Enterprise
Infrastructure

Key Concepts of Rule-based Engineering
Implicit Rule
Invocations

Rule Independence
And Modularity

Rule Execution Model

The Architecture of PERLATO

Rules

RAP

Conflict
Detector

Concurrent
Conflicts

Schedule
GeneratorSchedules

ruleset
Lockset

Generator

ruleset

1

2

6

7

5

8 9
10

11

12

Rule
Analyzer

Model

3
4

REMP

2

Research Questions
Is PERLATO effective in achieving
higher speedups for subject RAPs?

Is finer granularity locking strategy
more effective in obtaining higher
speedup for RAPs?

Is symbiotic scheduling effective in
obtaining higher speedup for RAPs?

Result for Subject RAPs

Conclusions

We created a novel solution for enhancing
performance and reliability of rule-driven
applications.

The results suggest that PERLATO is effective,
since we achieved over 225% speedup on average.

Email: drmark@uic.edu

mailto:drmark@uic.edu

	 Enhancing Performance And Reliability of Rule Management Platforms
	RulE Management Platforms (REMPs) allow software engineers to represent programming logic as conditional sentences that relate statements of facts (i.e., rules) using high-level declarative languages
	Rule Structure And Example
	An Interesting Question
	An Interesting Question
	An Interesting Question
	If-Then Decision Points
	If-Then Decision Points
	REMPS Are Widely Used
	How REMPs Work
	How REMPs Work
	How REMPs Work
	How REMPs Work
	How REMPs Work
	How REMPs Work
	How REMPs Work
	Separation of Concerns
	Benefits of REMPs And RAPs
	Constraints of REMPs And RAPs
	The PAR Model For REMPs
	Fundamental Problem
	Motivating Example: Credit
	Motivating Example: Debit
	Parallelism Interferes With Saliences
	Reliability Meets Performance
	The Problem Statement
	Core Ideas
	Our Solution - PERLATO
	Map fo PERLATO
	The Architecture of PERLATO
	Research Questions
	Result for Subject RAPs
	Conclusions
	Slide Number 34

