Enabling Efficiency Measurement

SPEC PTDaemon and Benchmark Methodology

Developed by the SPECpower Committee http://www.spec.org/power/

SPEC Power Temperature Daemon (PTDaemon)

- A Power and Temperature Measurement Harness
 - Infrastructure software to connect, control, and collect data from power and temperature measurement devices
 - Enables standardized power and temperature measurements
 - Utilized by benchmark organizations to add energy efficiency to their benchmarks
- Utilized by multiple products from different organizations
 - SPECpower_ssj2008
 - SPECweb2009
 - SPECvirt_sc2013
 - SPEC OMP2012
 - SPEC ACCEL
 - TPC-Energy
 - Server Efficiency Rating Tool (SERT)
 - Chauffeur Worklet Development Kit (WDK)
 - **VMmark**

Power Analyzers Acceptance

- Defined acceptance process to assure that supported analyzers deliver data within reasonable accuracy criteria (http://www.spec.org/power/docs/SPEC-Power Analyzer Acceptance Process.pdf)
- Vendor neutral:
 - Chroma, Hioki, Infratek, Instek, Newtons4th, Voltech, Xitron, Yokogawa, ZES Zimmer

Power & Performance Benchmark Methodology

- Best practices guide for benchmarks measuring performance and power http://www.spec.org/power/docs/SPEC-Power_and_Performance_Methodology.pdf
- **Purpose**
 - Introduction to understanding the relationship between power and performance metrics in benchmarks
 - For performance benchmark designers who want to integrate power measurement
 - · Applies to existing benchmarks and the design of new benchmarks
 - AC and DC

Independently utilized

 $V_{rms} = \frac{\sqrt{2}}{2} * V_{pk} = \sin(\frac{\pi}{4}) * V_{pk} \approx 0.707 * V_{pk}$

 $V_{pk} = 0.5 * V_{ppk}$

AC Voltage