

Why Does Performance Matter?

Latency Efficiency

Users: Response Latency Developers: Release Latency Operators: Efficiency

Less Time Less Cost

Faster Delivery

See talks by @adrianco Speed and Scale - QCon New York Fast Delivery - GOTO Copenhagen

This talk: How to use Cloud Native architecture to reduce cost without slowing down releases

Speeding up Development Cloud Native Applications Cost Optimization

@adrianco's job at the intersection of cloud and Enterprise IT, looking for disruption and opportunities.

@adrianco's job at the intersection of cloud and Enterprise IT, looking for disruption and opportunities.

Example: Docker wasn't on anyone's roadmap for 2014. It's on everyone's roadmap for 2015.

What does @adrianco do?

Presentations at Conferences

Presentations at Companies

Program
Committee for
Conferences

Maintain Relationship with Cloud Vendors

Tinkering with Technologies

Technology Due Diligence on Deals

Technical Advice for Portfolio Companies

Networking with Interesting People

Speeding Up Development

Decide

Decide

Developing at the Speed of Docker

Developers

- Compile/Build
- Seconds

Extend container

- Package dependencies
- Seconds

PaaS deploy Containers

- Docker startup
- Seconds

Developing at the Speed of Docker

Speed is addictive, hard to go back to taking much longer to get things done

What Happened?

Cost and size and risk of change reduced

Rate of change increased

Cloud Native Applications

Cloud Native A new engineering challenge

Construct a highly agile and highly available service from ephemeral and assumed broken components

Inspiration

Inspiration

State of the Art in Cloud Native Microservice Architectures

AWS Re:Invent : Asgard to Zuul https://www.youtube.com/watch?v=p7ysHhs5hl0
Resiliency at Massive Scale https://www.youtube.com/watch?v=ZfYJHtVL1 w

Microservice Architecture https://www.youtube.com/watch?v=ZfYJHtVL1 w

http://www.infoq.com/presentations/scale-gilt

http://www.slideshare.net/mcculloughsean/itier-breaking-up-the-monolith-philly-ete

http://www.infoq.com/presentations/Twitter-Timeline-Scalability http://www.infoq.com/presentations/twitter-soa http://www.infoq.com/presentations/Zipkin

https://speakerdeck.com/mattheath/scaling-micro-services-in-go-highload-plus-plus-2014

NETFLIX | COSS Trust with Verification

- Edda the "black box flight recorder" for configuration state
- Chaos Monkey enforcing stateless business logic
- Chaos Gorilla enforcing zone isolation/replication
- Chaos Kong enforcing region isolation/replication
- Security Monkey watching for insecure configuration settings
- See over 40 NetflixOSS projects at netflix.github.com
- Get "Technical Indigestion" trying to keep up with techblog.netflix.com

Autoscaled Ephemeral Instances at Netflix

Largest services use autoscaled red/black code pushes

Average lifetime of an instance is 36 hours

Netflix Automatic Code Deployment Canary Bad Signature

Implemented by Simon Tuffs

Netflix Automatic Code Deployment Canary Bad Signature

Happy Canary Signature

Datacenter Snowflakes

- Deploy in months
- Live for years

Virtualized and Cloud

- Deploy in minutes
- Live for weeks

Datacenter Snowflakes

- Deploy in months
- Live for years

Virtualized and Cloud

- Deploy in minutes
- Live for weeks

Docker Containers

- Deploy in seconds
- Live for minutes/hours

Datacenter Snowflakes

- Deploy in months
- Live for years

Virtualized and Cloud

- Deploy in minutes
- Live for weeks

Docker Containers

- Deploy in seconds
- Live for minutes/hours

AWS Lambda

- Deploy in milliseconds
- Live for seconds

Datacenter Snowflakes

- Deploy in months
- Live for years

Virtualized and Cloud

- Deploy in minutes
- Live for weeks

Docker Containers

- Deploy in seconds
- Live for minutes/hours

AWS Lambda

- Deploy in milliseconds
- Live for seconds

■ Speed enables and encourages new microservice architectures

With AWS Lambda compute resources are charged by the 100ms, not the hour

First 1,000,000 node.js executions/month are free First 400,000 GB-seconds of RAM-CPU are free

Monitoring Requirements

Metric resolution microseconds

Metric update rate 1 second

Metric to display latency less than human

attention span (<10s)

Low Latency SaaS Based Monitors

1-second data collection and real-time streaming processing on all components of the application stack

Model and visualize microservices Simulate interesting architectures

See <u>github.com/adrianco/spigo</u> Simulate Protocol Interactions in Go

See <u>github.com/adrianco/d3grow</u>

Dynamic visualization

Cost Optimization

Lower Spec Limit

When demand probability is below USL by 3.0 sigma scale down resource to save money

Capacity Optimization for a Single System Bottleneck

Upper Spec Limit

When demand probability exceeds USL by 4.0 sigma scale up resource to maintain low latency

Documentation on Capability Plots

To get accurate high dynamic range histograms see http://hdrhistogram.org/

Slideshare: 2003 Presentation on Capacity Planning Methods See US Patent: 7467291

What about cloud costs?

Optimize for speed first
Turn it off!
Capacity on demand
Consolidate and Reserve
Plan for price cuts
FOSS tooling

The Capacity Planning Problem

Best Case Waste

Product Launch Agility - Rightsized

Cloud capacity used is maybe half average DC capacity

Failure to Launch

@adrianco

Product Launch - Under-estimated

Mad scramble to add more DC capacity during launch phase outages

Over the Top Losses

Product Launch Agility – Over-estimated

Capacity wasted on failed launch magnifies the losses

Turning off Capacity

Off-peak production
Test environments
Dev out of hours
Dormant Data Science

Containerize Test Environments

Snapshot or freeze
Fast restart needed
Persistent storage
40 of 168 hrs/wk
Bin-packed containers
shippable.com saved 70%

@adrianco

Seasonal Savings

Autoscale the Costs Away

Daily Duty Cycle

Reactive Autoscaling saves around 50%

Predictive Autoscaling saves around 70% See Scryer on Netflix Tech Blog

Underutilized and Unused

AWS Support – Trusted Advisor – Your personal cloud assistant

Trusted Advi	ISOT Beta	Expand All	Download Excel	C Refresh All	Contact Support
	d Advisor program monitors AWS nd then notifies customers when o				
	No issue detected	Investigation Recomme	ended [] Ac	tion Recommended	
✓Cost Optim	nizing Checks			Updated: 2012 -	06-14 00:00 PDT C
> Summary: 0 of	6 Elastic IPs are not in use				
Underutilize	d EC2 Instances 🕜			Updated: 2012 -	06-13 22:27 PDT C
> Summary: 27 E	C2 instances are potentially underutiliz	ed			

Clean Up the Crud

Other simple optimization tips

• Don't forget to...

- Disassociate unused EIPs
- Delete unassociated Amazon
 EBS volumes
- Delete older Amazon EBS snapshots
- Leverage Amazon S3 Object Expiration

Total Cost of Oranges

When Comparing TCO...

Make sure that you are including all the cost factors into consideration

Place
Power
Pipes
People
Patterns

Total Cost of Oranges

When Comparing TCO...

Make sure that you are including all the cost factors into consideration

Place
Power
Pipes
People
Patterns

How much does datacenter automation software and support cost per instance?

When Do You Pay?

Cost Model Comparisons

AWS has most complex model

- Both highest and lowest cost options!
 CPU/Memory Ratios Vary
 - Can't get same config everywhere

Features Vary

- Local SSD included on some vendors, not others
- Network and storage charges also vary

Digital Ocean Flat Pricing

Hourly Price (\$0.06/hr)	Monthly Price (\$40/mo)
\$ No Upfront	\$ No Upfront
\$0.060/hr	\$0.056/hr
\$1555/36mo	\$1440/36mo
Savings	7%

Prices on Dec 7th, for 2 Core, 4G RAM, SSD, purely to show typical savings

Google Sustained Usage

Full Price Without Sustained Usage	Typical Sustained Usage Each Month	Full Sustained Usage Each Month
\$ No Upfront	\$ No Upfront	\$ No Upfront
\$0.063/hr	\$0.049/hr	\$0.045/hr
\$1633/36mo	\$1270/36mo	\$1166/36mo
Savings	22%	29%

Prices on Dec 7th, for n1.standard-1 (1 vCPU, 3.75G RAM, no disk) purely to show typical savings

AWS Reservations

Prices on Dec 7th, for m3.medium (1 vCPU, 3.75G RAM, SSD) purely to show typical savings

Blended Benefits

On Demand

Partial Upfront

All Upfront

Burst capacity guarantee
Higher availability with lower cost
Other accounts soak up any extra
Monthly billing roll-up
Capitalize upfront charges!
But: Fixed location and instance type

Use EC2 Spot Instances

Cloud native dynamic autoscaled spot instances

Real world total savings up to 50%

Right Sizing Instances

Six Ways to Cut Costs

#1 Business Agility by Rapid Experimentation = Profit

#2 Business-driven Auto Scaling Architectures = Savings

#3 Mix and Match Reserved Instances with On-Demand = Savings

#4 Consolidated Billing and Shared Reservations = Savings

#5 Always-on Instance Type Optimization = Recurring Savings

#6 Follow the Customer (Run web servers) during the day Follow the Money (Run Hadoop clusters) at night

Credit to Jinesh Varia of AWS for this summary

Compounded Savings

Agressive Compounding

Cost Monitoring and Optimization

Turn off idle instances
Clean up unused stuff
Optimize for pricing model
Assume prices will go down
Go cloud native to be fast and save
Complex dynamic control issues!

Any Questions?

- Battery Ventures http://www.battery.com
- Adrian's Tweets @adrianco and Blog http://perfcap.blogspot.com
- Slideshare http://slideshare.com/adriancockcroft
- Monitorama Opening Keynote Portland OR May 7th, 2014
- GOTO Chicago Opening Keynote May 20th, 2014
- Ocon New York Speed and Scale June 11th, 2014
- Structure Cloud Trends San Francisco June 19th, 2014
- GOTO Copenhagen/Aarhus Fast Delivery Denmark Sept 25th, 2014
- DevOps Enterprise Summit San Francisco Oct 21-23rd, 2014 #DOES14
- GOTO Berlin Migrating to Microservices Germany Nov 6th, 2014
- AWS Re: Invent Cloud Native Cost Optimization Las Vegas November 14th, 2014
- O'Reilly Software Architecture Conference Fast Delivery Boston March 16th 2015
- High Performance Transaction Systems Workshop http://hpts.ws September 2015

