
Cloud Native Cost Optimization
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
 ICPE - Austin, February 2015

@adrianco

Why Does
Performance Matter?

@adrianco

Latency
Efficiency

@adrianco

Users: Response Latency
Developers: Release Latency

Operators: Efficiency

@adrianco

Less Time
Less Cost

@adrianco

Faster Delivery
See talks by @adrianco

Speed and Scale - QCon New York
Fast Delivery - GOTO Copenhagen

@adrianco

Cheaper
This talk:

How to use Cloud Native architecture to
reduce cost without slowing down releases

Speeding up Development
Cloud Native Applications

Cost Optimization

Why am I here?

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

Why am I here?

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

2009

Why am I here?

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

2009

Why am I here?

@adrianco’s job at the
intersection of cloud
and Enterprise IT,
looking for disruption
and opportunities.

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

2014
2009

Why am I here?

@adrianco’s job at the
intersection of cloud
and Enterprise IT,
looking for disruption
and opportunities.

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

2014
2009

20144

Example: Docker
wasn’t on anyone’s
roadmap for 2014. It’s
on everyone’s roadmap
for 2015.

What does @adrianco do?

@adrianco

Technology Due
Diligence on Deals

Presentations at
Conferences

Presentations at
Companies

Technical Advice
for Portfolio
Companies

Program
Committee for
Conferences

Networking with
Interesting PeopleTinkering with

Technologies

Maintain
Relationship with
Cloud Vendors

Speeding Up
Development

Observe

Orient

Decide

Act Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

Model
Hypotheses

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

Model
Hypotheses

BIG DATA

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Model
Hypotheses

BIG DATA

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Release Plan

Developer

Developer

Developer

Developer

Developer

QA Release Q
Integration

Ops Replace Old pp
With New

Release

Monolithic service updates

Works well with a small number
of developers and a single
language like php, java or ruby

Release Plan

Developer

Developer

Developer

Developer

Developer

QA Release Q
Integration

Ops Replace Old pp
With New

Release

Bugs

Monolithic service updates

Works well with a small number
of developers and a single
language like php, java or ruby

Release Plan

Developer

Developer

Developer

Developer

Developer

QA Release Q
Integration

Ops Replace Old pp
With New

Release

Bugs

Bugs

Monolithic service updates

Works well with a small number
of developers and a single
language like php, java or ruby

@adrianco

Breaking Down the SILOs

@adrianco

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr

@adrianco

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr

Product Team Using Monolithic Delivery
Product Team Using Monolithic Delivery

@adrianco

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr
Product Team Using Microservices

Product Team Using Monolithic Delivery

Product Team Using Microservices

Product Team Using Microservices

Product Team Using Monolithic Delivery

@adrianco

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr
Product Team Using Microservices

Product Team Using Monolithic Delivery

Platform TeamProduct Team Using Microservices

Product Team Using Microservices

Product Team Using Monolithic Delivery

@adrianco

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr
Product Team Using Microservices

Product Team Using Monolithic Delivery

Platform Team
A
P
IProduct Team Using Microservices

Product Team Using Microservices

Product Team Using Monolithic Delivery

@adrianco

Breaking Down the SILOs

QA DBA Sys
Adm

Net
Adm

SAN
AdmDevUXProd

Mgr
Product Team Using Microservices

Product Team Using Monolithic Delivery

Platform Team

DevOps is a Re-Org!

A
P
IProduct Team Using Microservices

Product Team Using Microservices

Product Team Using Monolithic Delivery

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Immutable microservice deployment
scales, is faster with large teams and
diverse platform components

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy p y
Feature to
Production

Deploy p y
Feature to
Production

Deploy p y
Feature to
Production

Deploy p y
Feature to
Production

Immutable microservice deployment
scales, is faster with large teams and
diverse platform components

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy p y
Feature to
Production

Deploy p y
Feature to
Production

Deploy p y
Feature to
Production

Deploy p y
Feature to
Production

Bugs

Immutable microservice deployment
scales, is faster with large teams and
diverse platform components

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy p y
Feature to
Production

Deploy p y
Feature to
Production

Deploy p y
Feature to
Production

Deploy p y
Feature to
Production

Bugs

Deploy p y
Feature to
Production

Immutable microservice deployment
scales, is faster with large teams and
diverse platform components

Configure

Configure

Developer

Developer

Developer

Release Plan

Release Plan

Release Plan

Deploy pp yy
Standardized

Services

Standardized portable container
deployment saves time and effort

https://hub.docker.comm

Configure

Configure

Developer

Developer

Developer

Release Plan

Release Plan

Release Plan

Deploy pp yy
Standardized

Services

Deploy p y
Feature to
Production

Deploy p y
Feature to
Production

Deploy p y
Feature to
Production

Bugs

Deploy p y
Feature to
Production

Standardized portable container
deployment saves time and effort

https://hub.docker.comm

@adrianco

Developing at the Speed of Docker

Developers
• Compile/Build
• Seconds

Extend container
• Package dependencies
• Seconds

PaaS deploy Containers
• Docker startup
• Seconds

@adrianco

Developing at the Speed of Docker

Speed is addictive, hard to go back to taking much longer to get things done

Developers
• Compile/Build
• Seconds

Extend container
• Package dependencies
• Seconds

PaaS deploy Containers
• Docker startup
• Seconds

@adrianco

What Happened?
Rate of change

increased

Cost and size and
risk of change

reduced

Cloud Native
Applications

Cloud Native
A new engineering challenge

Construct a highly agile and highly
available service from ephemeral and

assumed broken components

Inspiration

Inspiration

http://www.infoq.com/presentations/scale-gilt

http://www.slideshare.net/mcculloughsean/itier-breaking-up-the-monolith-philly-ete

http://www.infoq.com/presentations/Twitter-Timeline-Scalability
http://www.infoq.com/presentations/twitter-soa

http://www.infoq.com/presentations/Zipkin

https://speakerdeck.com/mattheath/scaling-micro-services-in-go-highload-plus-plus-2014

State of the Art in Cloud Native
Microservice Architectures

AWS Re:Invent : Asgard to Zuul https://www.youtube.com/watch?v=p7ysHhs5hl0
Resiliency at Massive Scale https://www.youtube.com/watch?v=ZfYJHtVL1_w

Microservice Architecture https://www.youtube.com/watch?v=CriDUYtfrjs

@adrianco

● Edda - the “black box flight recorder” for configuration state

● Chaos Monkey - enforcing stateless business logic

● Chaos Gorilla - enforcing zone isolation/replication

● Chaos Kong - enforcing region isolation/replication

● Security Monkey - watching for insecure configuration settings

● See over 40 NetflixOSS projects at netflix.github.com

● Get “Technical Indigestion” trying to keep up with techblog.netflix.com

 Trust with Verification

Autoscaled Ephemeral Instances at Netflix

Largest services use autoscaled red/black code pushes

Average lifetime of an instance is 36 hours
P
u
s
h

Autoscale Up
Autoscale Down

Netflix Automatic Code Deployment Canary
Bad Signature

Implemented
by Simon Tuffs

Netflix Automatic Code Deployment Canary
Bad Signature

Implemented
by Simon Tuffs

@adrianco

Happy Canary Signature

@adrianco

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

@adrianco

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

@adrianco

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Docker Containers
• Deploy in seconds
• Live for minutes/hours

@adrianco

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Docker Containers
• Deploy in seconds
• Live for minutes/hours

AWS Lambda
• Deploy in milliseconds
• Live for seconds

@adrianco

Speeding Up The Platform

Speed enables and encourages new microservice architectures

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Docker Containers
• Deploy in seconds
• Live for minutes/hours

AWS Lambda
• Deploy in milliseconds
• Live for seconds

With AWS Lambda
compute resources are charged

by the 100ms, not the hour
First 1,000,000 node.js executions/month are free
First 400,000 GB-seconds of RAM-CPU are free

Monitoring Requirements
Metric resolution microseconds

Metric update rate 1 second
Metric to display latency less than human

attention span (<10s)

@adrianco

Low Latency SaaS Based Monitors

www.vividcortex.com and www.boundary.com

Adrian’s Tinkering Projects

Model and visualize microservices
Simulate interesting architectures

See github.com/adrianco/spigo
Simulate Protocol Interactions in Go

See github.com/adrianco/d3grow
Dynamic visualization

Cost Optimization

See US Patent: 7467291Slideshare: 2003 Presentation on Capacity Planning Methods

Capacity Optimization for a
Single System Bottleneck

Upper Spec Limit

When demand
probability exceeds
USL by 4.0 sigma
scale up resource to
maintain low latency

Lower Spec Limit

When demand
probability is below
USL by 3.0 sigma
scale down resource
to save money

 To get accurate high dynamic range histograms see http://hdrhistogram.org/

Documentation on Capability Plots

But interesting systems
don’t have a single

bottleneck nowadays…

But interesting systems
don’t have a single

bottleneck nowadays…

@adrianco

What about cloud
costs?

@adrianco

Cloud Native Cost Optimization

Optimize for speed first
Turn it off!
Capacity on demand
Consolidate and Reserve
Plan for price cuts
FOSS tooling

$ $ $

@adrianco

The Capacity
Planning Problem

@adrianco

Best Case Waste

Cloud capacity
used is maybe
half average
DC capacity

@adrianco

Failure to Launch

Pre-
La

un
ch

Buil

d-o
ut

Te
sti

ng

La
un

ch

Grow
th

Grow
th

Mad scramble
to add more DC
capacity during
launch phase
outages

@adrianco

Over the Top Losses

Pre-
La

un
ch

Buil

d-o
ut

Te
sti

ng

La
un

ch

Grow
th

Grow
th

$

Capacity wasted
on failed launch
magnifies the
losses

@adrianco

Turning off Capacity

Off-peak production
Test environments
Dev out of hours
Dormant Data Science

@adrianco

Containerize Test Environments

Snapshot or freeze
Fast restart needed
Persistent storage
40 of 168 hrs/wk
Bin-packed containers
shippable.com saved 70%

@adrianco

Seasonal Savings

1 5 9 13 17 21 25 29 33 37 41 45 49

W
eb

 S
er

ve
rs

Week

50% Savings

@adrianco

Autoscale the Costs Away

@adrianco

Daily Duty Cycle

Reactive Autoscaling
saves around 50%

Predictive Autoscaling saves around 70%
See Scryer on Netflix Tech Blog

@adrianco

Underutilized and Unused

@adrianco

Clean Up the Crud

• 
– 
– 

– 

– 

@adrianco

Total Cost of Oranges

@adrianco

Total Cost of Oranges

How much does
datacenter automation
software and support
cost per instance?

@adrianco

When Do You Pay?

@adrianco

bill

Now
Next

Month
Ages
Ago

Lease
Building

Install
AC etc

Rack &
Stack

Private
Cloud SW

Run
My Stuff

Datacenter Up Front Costs

Cost Model Comparisons

AWS has most complex model
• Both highest and lowest cost options!

CPU/Memory Ratios Vary
• Can’t get same config everywhere

Features Vary
• Local SSD included on some vendors, not others
• Network and storage charges also vary

@adrianco

Digital Ocean Flat Pricing

Hourly Price ($0.06/hr) Monthly Price ($40/mo)

$ No Upfront $ No Upfront

$0.060/hr $0.056/hr

$1555/36mo $1440/36mo

Savings 7%

Prices on Dec 7th, for 2 Core, 4G RAM, SSD, purely to show typical savings

@adrianco

Google Sustained Usage

Full Price Without
Sustained Usage

Typical Sustained
Usage Each Month

Full Sustained Usage
Each Month

$ No Upfront $ No Upfront $ No Upfront

$0.063/hr $0.049/hr $0.045/hr

$1633/36mo $1270/36mo $1166/36mo

Savings 22% 29%

Prices on Dec 7th, for n1.standard-1 (1 vCPU, 3.75G RAM, no disk) purely to show typical savings

@adrianco

AWS Reservations

On Demand No Upfront
1 year

Partial Upfront
3 year

All Upfront
3 year

$ No Upfront $No Upfront $337 Upfront $687 Upfront

$0.070/hr $0.050/hr $0.0278/hr $0.00/hr

$1840/36mo $1314/36mo $731/36mo $687/36mo

Savings 29% 60% 63%

Prices on Dec 7th, for m3.medium (1 vCPU, 3.75G RAM, SSD) purely to show typical savings

@adrianco

Blended Benefits

All Upfront

Partial Upfront

On Demand

@adrianco

Consolidated Reservations
Burst capacity guarantee
Higher availability with lower cost
Other accounts soak up any extra
Monthly billing roll-up
Capitalize upfront charges!
But: Fixed location and instance type

@adrianco

Use EC2 Spot Instances

Cloud native
dynamic autoscaled
spot instances

Real world total
 savings up to 50%

@adrianco

Right Sizing Instances
Fit the instance size to the workload

@adrianco

Six Ways to Cut Costs

Credit to Jinesh Varia of AWS for this summary

@adrianco

Compounded
Savings

@adrianco

Lift and Shift Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

253030

707070

100 Traditional
application
using AWS
heavy use
reservations

Base price is for capacity bought up-front

@adrianco

Lift and Shift Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

253030

707070

100 Traditional
application
using AWS
heavy use
reservations

Seasonal

Base price is for capacity bought up-front

@adrianco

Lift and Shift Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

253030

707070

100 Traditional
application
using AWS
heavy use
reservations

Seasonal Daily Scaling

Base price is for capacity bought up-front

@adrianco

Lift and Shift Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

253030

707070

100 Traditional
application
using AWS
heavy use
reservations

Seasonal Daily Scaling Tech Refres

Base price is for capacity bought up-front

@adrianco

Conservative Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

152025
35

50

70

100 Cloud native
application
partially optimized
light use reservations

@adrianco

Conservative Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

152025
35

50

70

100 Cloud native
application
partially optimized
light use reservations

@adrianco

Conservative Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

152025
35

50

70

100 Cloud native
application
partially optimized
light use reservations

@adrianco

Conservative Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

152025
35

50

70

100 Cloud native
application
partially optimized
light use reservations

@adrianco

Conservative Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

152025
35

50

70

100 Cloud native
application
partially optimized
light use reservations

@adrianco

Agressive Compounding

0

25

50

75

100

Base Price Rightsized Seasonal Daily Scaling Reserved Tech Refresh Price Cuts

46812
25

50

100 Cloud native application
fully optimized autoscaling
mixed reservation use
costs 4% of base price
over three years!

Price Cuts

4444

@adrianco

Cost Monitoring and Optimization

@adrian

@adrianco

Final Thoughts

Turn off idle instances
Clean up unused stuff
Optimize for pricing model
Assume prices will go down
Go cloud native to be fast and save
Complex dynamic control issues!

@adrianco

Any Questions?

Disclosure: some of the companies mentioned may be Battery Ventures Portfolio Companies
See www.battery.com for a list of portfolio investments

● Battery Ventures http://www.battery.com
● Adrian’s Tweets @adrianco and Blog http://perfcap.blogspot.com
● Slideshare http://slideshare.com/adriancockcroft

● Monitorama Opening Keynote Portland OR - May 7
th

, 2014
● GOTO Chicago Opening Keynote May 20

th
, 2014

● Qcon New York – Speed and Scale - June 11
th

, 2014
● Structure - Cloud Trends - San Francisco - June 19th, 2014
● GOTO Copenhagen/Aarhus – Fast Delivery - Denmark – Sept 25

th
, 2014

● DevOps Enterprise Summit - San Francisco - Oct 21-23rd, 2014 #DOES14
● GOTO Berlin - Migrating to Microservices - Germany - Nov 6th, 2014
● AWS Re:Invent - Cloud Native Cost Optimization - Las Vegas - November 14th, 2014
● O’Reilly Software Architecture Conference - Fast Delivery - Boston March 16th 2015
● High Performance Transaction Systems Workshop - http://hpts.ws September 2015

